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While South Americans are underrepresented in human genomic
diversity studies, Brazil has been a classical model for population
genetics studies on admixture. We present the results of the EPIGEN
Brazil Initiative, the most comprehensive up-to-date genomic anal-
ysis of any Latin-American population. A population-based genome-
wide analysis of 6,487 individuals was performed in the context of
worldwide genomic diversity to elucidate how ancestry, kinship,
and inbreeding interact in three populations with different histories
from the Northeast (African ancestry: 50%), Southeast, and South
(both with European ancestry >70%) of Brazil. We showed that
ancestry-positive assortative mating permeated Brazilian history.
We traced European ancestry in the Southeast/South to a wider
European/Middle Eastern region with respect to the Northeast,
where ancestry seems restricted to Iberia. By developing an approx-
imate Bayesian computation framework, we infer more recent Eu-
ropean immigration to the Southeast/South than to the Northeast.
Also, the observed low Native-American ancestry (6–8%) was
mostly introduced in different regions of Brazil soon after the
European Conquest. We broadened our understanding of the Af-
rican diaspora, the major destination of which was Brazil, by
revealing that Brazilians display two within-Africa ancestry com-
ponents: one associated with non-Bantu/western Africans (more
evident in the Northeast and African Americans) and one associ-
ated with Bantu/eastern Africans (more present in the Southeast/
South). Furthermore, the whole-genome analysis of 30 individuals
(42-fold deep coverage) shows that continental admixture rather
than local post-Columbian history is the main and complex deter-
minant of the individual amount of deleterious genotypes.

Latin America | population genetics | Salvador SCAALA |
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Latin Americans, who are classical models of the effects of
admixture in human populations (1, 2), remain underrepre-

sented in studies of human genomic diversity, notwithstanding re-
cent studies (3, 4). Indeed, no large genome-wide study on
admixed South Americans has been conducted so far. Brazil is

the largest and most populous Latin-American country. Its over
200 million inhabitants are the product of post-Columbian
admixture between Amerindians, Europeans colonizers or
immigrants, and African slaves (1). Interestingly, Brazil was the
destiny of nearly 40% of the African diaspora, receiving seven
times more slaves than the United States (nearly 4 million vs.
600,000).
Here, we present results of the EPIGEN Brazil Initiative (https://

epigen.grude.ufmg.br), the most comprehensive up-to-date genomic
analysis of a Latin-American population. We genotyped nearly
2.2 million SNPs in 6,487 admixed individuals from three
population-based cohorts from different regions with distinct
demographic and socioeconomic backgrounds and sequenced
the whole genome of 30 individuals from these populations at an
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average deep coverage of 42× (Fig. 1B and SI Appendix, sections
1, 2, and 8). By leveraging on a population-based approach,
we (i) identified and quantified ancestry components of three
representative Brazilian populations at a previously unmatched
geographic resolution; (ii) developed an approximate Bayesian
computation (ABC) approach and inferred aspects of the admixture
dynamics in Northeastern, Southeastern, and Southern Brazil;
(iii) elucidated how aspects of the ancestry-related social history of
Brazilians influenced their genetic structure; and (iv) studied how
admixture, kinship, and inbreeding interact and shape the pattern
of putative deleterious mutations in an admixed population.

Results and Discussion
Populations, Continental Ancestry, and Population Structure. We
studied the following three population-based cohorts (Fig. 1B).
(i) SCAALA (Social Changes, Asthma and Allergy in Latin America
Program) (5) (1,309 individuals) from Salvador, a coastal city
with 2.7 million inhabitants in Northeastern Brazil that harbors
the most conspicuous demographic and cultural African contri-
bution (6). We inferred (7) that this population has the largest
African ancestry (50.8%; SE = 0.35) among the EPIGEN
populations, with 42.9% (SE = 0.35) and 6.4% (SE = 0.09) of

European and Amerindian ancestries, respectively. Notably, this
African ancestry is lower than that usually observed in African
Americans (8, 9). (ii) The Bambuí Aging Cohort Study (10),
ongoing in the homonymous city of ∼15,000 inhabitants, in the
inland of Southeastern Brazil (1,442 individuals who were 82%
of the residents older than 60 y old at the baseline year). We
estimated that Bambuí has 78.5% (SE = 0.4) of European,
14.7% (SE = 0.4) of African, and 6.7% (SE = 0.1) of Amerindian
ancestries. (iii) The 1982 Pelotas Birth Cohort Study (11) (3,736
individuals; 99% of all births in the city at the baseline year).
Pelotas is a city in Southern Brazil with 214,000 inhabitants.
Ancestry in Pelotas is 76.1% (SE = 0.33) European, 15.9% (SE =
0.3) African, and 8% (SE = 0.08) Amerindian.
By comparing autosomal mtDNA and X-chromosome di-

versity, we found across the three populations the signature of a
historical pattern of sex-biased preferential mating between
males with predominant European ancestry and women with
predominant African or Amerindian ancestry (12) (SI Appendix,
sections 6.6 and 6.9, Fig. S12, and Table S18). We determined
(13) that individuals from Salvador and Pelotas were, with few
exceptions, unrelated and have low consanguinity (Fig. 1A and SI
Appendix, Figs. S1 and S2). Conversely, the Bambuí cohort has
the highest family structure and inbreeding [Fig. 1A and SI Ap-
pendix, section 4.1 (discussion about the age structure of this
cohort) and Figs. S1 and S2]. Bambuí includes several families
with more than five related individuals showing at least one
second-degree (or closer) relative. Bambuí mean inbreeding
coefficient (0.010; SE = 0.0008) (SI Appendix, Fig. S2) is com-
parable with estimates observed in populations with 15–25% of
consanguineous marriages from India (14). Interestingly, in-
breeding in Bambuí was correlated with European ancestry
(ρSpearman = 0.20; P < 10−15). These higher inbreeding and kin-
ship structures are consistent with Bambuí being the smallest and
the most isolated of the EPIGEN populations.
Continental genomic ancestry in Latin America (and specifi-

cally, in Brazil) is correlated with a set of phenotypes, such as
skin color and self-reported ethnicity, and social and cultural
features, such as socioeconomic status (15–17). We observed a
positive correlation across the three EPIGEN populations be-
tween SNP-specific Africans/Europeans FST (a measurement
of informativeness of ancestry) and SNP-specific FIT (a mea-
surement of departure from Hardy–Weinberg equilibrium)

Fig. 1. Continental admixture and kinship
analysis of the EPIGEN Brazil populations.
(A) Kinship coefficient for each pair of individuals
and the probability that they share zero identity
by descent (IBD) alleles (IBD = 0). Horizontal lines
represent a kinship coefficient threshold used to
consider individuals as relatives. (B) Brazilian
regions, the studied populations, and their con-
tinental individual ancestry bar plots. N repre-
sents the numbers of EPIGEN individuals in the
Original Dataset (including relatives; detailed in
SI Appendix, section 6). (C) PCA representation,
including worldwide populations and the EPIGEN
populations, using only unrelated individuals
(Dataset U; explained in SI Appendix, section 6).
The three graphics derive from the same analysis
and are different only for the plotting of the
EPIGEN individuals. AP, admixed population;
ASW, Americans of African ancestry in USA;
CEU, Utah residents with Northern and Western
European ancestry; CLM, Colombians from
Medellin, Colombia; EAFR, east Africa; FIN,
Finnish in Finland; French B, Basque; GBR, Brit-
ish in England and Scotland; IBS, Iberian pop-
ulation in Spain; LWK, Luhya in Webuye, Kenya;
ME, Middle East; MXL/MEX, Mexican ancestry
from Los Angeles; N., (North) Italian; NAT, Native American; NE, northeast; NEUR, north Europe; PC, principal component; PUR, Puerto Ricans from Puerto
Rico; S, south; SE, southeast; SEUR, south Europe; TSI, Toscani in Italia; YRI, Yoruba in Ibadan, Nigeira; WAFR, west Africa.

Significance

The EPIGEN Brazil Project is the largest Latin-American initia-
tive to study the genomic diversity of admixed populations and
its effect on phenotypes. We studied 6,487 Brazilians from
three population-based cohorts with different geographic and
demographic backgrounds. We identified ancestry components
of these populations at a previously unmatched geographic
resolution. We broadened our understanding of the African
diaspora, the principal destination of which was Brazil, by re-
vealing an African ancestry component that likely derives from
the slave trade from Bantu/eastern African populations. In the
context of the current debate about how the pattern of dele-
terious mutations varies between Africans and Europeans, we
use whole-genome data to show that continental admixture is
the main and complex determinant of the amount of delete-
rious genotypes in admixed individuals.
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(SI Appendix, Fig. S3). This finding indicates that, after five
centuries of admixture, Brazilians still preferentially mate with
individuals with similar ancestry (and its correlated morpholog-
ical phenotypes and socioeconomic characteristics), a trend also
observed in Mexicans and Puerto Ricans (18). Interestingly, the
highest correlations were found in Pelotas and Bambuí, consis-
tent with their higher proportion of individuals with a clearly
predominant ancestry (European or African) compared with Salvador
(Fig. 1 B and C). Conversely, in Salvador, despite its highest
mean African ancestry, individuals are more admixed (Fig. 1 B
and C), probably because of a combination of a longer history of
admixture (see below) and the lower and more homogeneous
socioeconomic status of this cohort (5).
Three outcomes illustrate how population subdivision and in-

breeding (both partly ancestry-dependent) interact to shape pop-
ulation structure in admixed populations with different sizes (SI
Appendix, Figs. S1 and S3). First, Bambuí (the smallest city) has
the strongest departure from Hardy–Weinberg equilibrium
(FIT =0.016; SE = 0.00003) because of both inbreeding (FIS =
0.010; SE = 0.0008) and ancestry-based population subdivision
(ρFIT-FST = 0.18; P < 10−16). Second, Pelotas (a medium-sized
city; FIT = 0.012; SE = 0.00002) has negligible inbreeding (FIS =
−0.001; SE = 0.0002) but the strongest ancestry-based pop-
ulation subdivision (ρFIT-FST = 0.38; P < 10−16). Third, the large
city of Salvador shows the lowest inbreeding and ancestry-based
population subdivision (FIT = −0.003; SE = 0.00002; FIS =
−0.001; SE = 0.0003; ρFIT-FST = 0.08; P < 10−16).
Overall, the EPIGEN populations studied by a population-based

approach exemplify how ancestry, kinship, and inbreeding may be
differently structured in small (Bambuí), medium (Pelotas), and
large (Salvador) admixed Latin-American populations. These pop-
ulations fairly represent the three most populated Brazilian regions
(Northeast, Southeast, and South) with their geographic distribution
and continental ancestry (Fig. 1) and are good examples of the
Latin-American genetic diversity with their ethnic diversity.

Differences in Admixture Dynamics. We estimated the continental
origin of each allele for each SNP along each chromosome of the
EPIGEN individuals (19) (SI Appendix, section 6.7) and calculated
the lengths of chromosome segments of continuous specific ancestry
(CSSA) (Fig. 2A), with distribution that informs how admixture
occurred over time. By leveraging on the model by Liang and
Nielsen (20) of CSSA, we developed an ABC framework to infer
admixture dynamics (SI Appendix, section 6.8). We simulated CSSA
distributions generated by a demographic history of three pulses of
trihybrid admixture that occurred 18–16, 12–10, and 6–4 generations
ago, conditioning on the observed current admixture proportions of
each of the EPIGEN populations. This demographic model con-
ciliates statistical complexity and the real history of admixture. We
inferred the posterior distributions of nine parameters mn,P, where

m is the proportion of immigrant individuals entering in the
admixed population from the n ancestral population (African,
European, or Native-American ancestry) in the P admixture pulse.
Interestingly, ABC results (Fig. 2B) show that the observed low

Native-American ancestry was mostly introduced in different regions
of Brazil soon after the European Conquest of the Americas, which
is consistent with the posterior depletion of the Native-American
population in Brazil. Also, we inferred a predominantly earlier Eu-
ropean colonization in the Northeast (Salvador) vs. a more recent
immigration in Southeastern and Southern Brazil (Bambuí and
Pelotas), consistent with historical records (brasil500anos.ibge.gov.br/).
Conversely, African admixture showed a decreasing temporal trend
shared by the three EPIGEN populations (21). Complementary
explanations are continuous local immigration into the admixed
populations from communities with high African ancestry
already settled in Brazil [for example, quilombos (i.e., Afro-
Brazilian slave-derived communities in Brazil) (22)].

Dissecting European Ancestry. To dissect the ancestry of Brazilians at
a subcontinental level, we applied (i) the ADMIXTUREmethod (7)
by increasing the number of ancestral clusters (K) that explains the
observed genetic structure (SI Appendix, Figs. S4 and S5) and (ii) the
Principal Component Analysis (PCA) (23) (Figs. 1C and 3 B and D
and SI Appendix, Fig. S6). To study biogeographic ancestry, we ex-
cluded sets of relatives that could affect our inferences at the within-
continent level (24). We developed a method based on complex
networks to reduce the relatedness of the analyzed individuals by
minimizing the number of excluded individuals (SI Appendix, section
6.1). Using this method, we created the Dataset Unrelated (Dataset
U), including 5,825 Brazilians, 1,780 worldwide individuals, and no
pair of individuals closer than second-degree relatives. Hereafter,
PCA and ADMIXTURE results are relative to Dataset U.
Brazil received several immigration waves from diverse Eu-

ropean origins during the last five centuries (brasil500anos.ibge.
gov.br/): Portuguese (the first colonizers), who also arrived in
large numbers during the last 150 y; Italians (mostly to the South
and Southeast); and Germans (mostly to the South). In our PCA
representation (Fig. 3B), the European component of the genomes
of most Brazilians is similar to individuals from the Iberian Penin-
sula and neighboring regions. The resemblance in within-European
ancestry of individuals from Pelotas (South) and Bambuí (South-
east) to central North Europeans and Middle Easters, respectively
(Fig. 3B), reflects a geographically wider European ancestry of these
two populations with respect to Salvador. Considering the total
European ancestry estimated by ADMIXTURE, we inferred a
higher proportion of North European-associated ancestry in Pelotas
(40.2%) than in Bambuí (35.8%) and Salvador (36.7%; P < 10−15;
Wilcoxon tests) (Fig. 3A, red cluster in K = 7). We confirmed these
results by analyzing a reduced number of SNPs with a larger set of

A

B

Fig. 2. Distributions of lengths of chromosomal
segments of (A) CSSA and (B) admixture dynamics
inferences estimated for three EPIGEN Brazilian
populations. (A) CSSA lengths were distributed in
50 equally spaced bins per population. Red, blue,
and green dots represent a European, an African,
and a Native-American CSSA, respectively. (B) We
inferred the posterior densities of the proportions
of immigrants (with respect to the admixed pop-
ulation) from each origin, and we show their 90%
highest posterior density (HPD) intervals. Inferences
are based on a model of three pulses of admixture
(vertical axis) simulated based on the model of CSSAs
evolution by Liang and Nielsen (20). Inferences are
based on approximate Bayesian computation. An-
cestry color codes are red for European, blue for Af-
rican, and green for Native American.
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European individuals and populations (25, 26) (SI Appendix,
section 6.2).

Brazil, the Main Destination of the African Diaspora. African slaves
arrived to Brazil during four centuries, whereas most arrivals to the
United States occurred along two centuries, and the geographic and
ethnic origin of Brazilian slaves differ from Caribbeans and African
Americans (27). In fact, the Portuguese Crown imported slaves to
Brazil from western and central west Africa (the two are the major
sources of the slave trade to all of the Americas) as well as
Mozambique. We detected two within-Africa ancestry clusters in
the current Brazilian population (Fig. 3C, K = 9 and SI Appendix,
section 6.3): one associated with the Yoruba/Mandenka non-Bantu
western populations (Fig. 3C, blue) and one associated with the
Luhya/HGDP (Human Genome Diversity Project) Bantu pop-
ulations from eastern Africa (Fig. 3C, mustard). Interestingly, the
proportions of these ancestry clusters, which are present across all
of the analyzed African and Latin-American populations, differ
across them. The blue cluster in Fig. 3C predominates in African
Americans and in Salvador, accounting for 83% and 75% of the
total African ancestry, respectively (against 17% and 25%, re-
spectively, of the mustard cluster in Fig. 3C) (SI Appendix, Table
S17). Comparatively, the mustard cluster in Fig. 3C is more evident

in Southeastern and Southern Brazil (36% and 44% of African
ancestry in Bambuí and Pelotas, respectively). These results are
consistent with the fact that a large proportion of Yoruba slaves
arrived in Salvador, whereas the Mozambican Bantu slaves dis-
embarked primarily in Rio de Janeiro in Southeastern Brazil (21).
These results show for the first time, to our knowledge, that the
genetic structure of Latin Americans reflects a more diversified
origin of the African diaspora into the continent. Interestingly, the
two within-African ancestry clusters in the Brazilian populations
(showing an average FST of 0.02) are characterized by 3,318 SNPs,
with the 10% top FST values higher than 0.06, and include 38 SNPs
that are hits of genome-wide association studies (SI Appendix, sec-
tion 7 and Table S25).

Pattern of Deleterious Variants: Effect of Continental Admixture,
Kinship, and Inbreeding. Based on whole-genome data from 30
individuals (10 from each of three EPIGEN populations), we
identified putative deleterious nonsynonymous variants (28) (SI
Appendix, section 8). There are recent interest in and apparently
conflicting results on whether Europeans have proportionally
more deleterious variants in homozygosis than Africans (29–32).
Lohmueller et al. (29) explained these differences as an effect of
the Out of Africa bottleneck on current non-African populations.
Out of Africa would have enhanced the effect of genetic drift
and attenuated the effect of purifying natural selection, pre-
venting, in many instances, the extinction of (mostly weakly)
deleterious variants in non-Africans.
We investigated how European ancestry shapes the amount

of deleterious variants in homozygosis (a more likely genotype
for common/weakly deleterious variants) and heterozygosis in
admixed Latin-American individuals. We observed three pat-
terns (Fig. 4). (i) Considering all (i.e., weakly and highly) dele-
terious variants, for a class of individuals with high European
ancestry (>65%; from Bambuí and Pelotas), the individual
number of deleterious variants in homozygosis is correlated with
European ancestry, but importantly, this correlation is not ob-
served among individuals with intermediate European ancestry
(from Salvador) (Fig. 4A). (ii) The individual number of dele-
terious variants (both all and rare classes) in heterozygosis (Fig. 4
B and D) decreases linearly with European ancestry, regardless
the cohort of origin. This result is also observed for rare dele-
terious variants in homozygosis, although the pattern is not very
clear in this case (Fig. 4C). (iii) There are no differences in the
amount of deleterious variants between individuals from Bambuí
and Pelotas. These populations have similar continental admixture
proportions and dynamics, but different post-Columbian population
sizes and histories of isolation, assortative mating, kinship structure,
and inbreeding. Taken together, our results are consistent with the
results and evolutionary scenario proposed by Lohmueller et al.
(29) and Lohmueller (31), and suggest that, in Latin-American
populations, the main determinant of the amount of deleteri-
ous variants is the history of continental admixture, although in a
more complex fashion than previously thought (pattern i). Com-
paratively, the role of local demographic history seems less relevant.

Conclusion
A thread of historical facts has modeled the genetic structure of
Brazilians. Our population-based and fine-scale analyses revealed
novel aspects of the genetic structure of Brazilians. In 1870, blacks
were the major ethnic group in Brazil (21), but this scenario
changed after the arrival of nearly 4 million Europeans during the
second one-half of the 19th century and the first one-half of the
20th century. This immigration wave was encouraged by Brazilian
officials as a way of “whiting” the population (33), and it trans-
formed Brazil into a predominantly white country, particularly in
the Southeast and South. Consistently, (i) we observed that larger
chromosomal segments of continuous European ancestry in the
southeast/south are the signature of this recent European immi-
gration, and (ii) we traced the European ancestry in the Southeast/
South of Brazil to a wider geographical region (including central
northern Europe and the Middle East) than in Salvador (more

Fig. 3. European and African ancestry clusters in the Brazilian populations. We
show (A and C) relevant ADMIXTURE individual ancestry bar plots and (B and D)
plots of principal components (PCs) that dissect ancestry within (A and B)
Europe and (C and D) Africa. We performed the analyses using Dataset U
(unrelated Brazilians and worldwide individuals). We only plot individuals from
relevant ancestral populations. Complete ADMIXTURE and PCA results are
represented in SI Appendix, section 6 and Figs. S4–S6. Black ellipses in B show
some individuals from Pelotas (Southern Brazil) clustering with northern Euro-
pean individuals toward the top and individuals from Bambuí (Southeastern
Brazil) clustering with Middle Eastern individuals toward the bottom. AP,
admixed population; ASW, Americans of African ancestry in USA; CEU, Utah
residents with Northern and Western European ancestry; CLM, Colombians
from Medellin, Colombia; EAFR, east Africa; FIN, Finnish in Finland; French B,
Basque; GBR, British in England and Scotland; IBS, Iberian population in Spain;
LWK, Luhya in Webuye, Kenya; ME, Middle East; MXL/MEX, Mexican ancestry
from Los Angeles; N., (North) Italian; NAT, Native American; NE, northeast;
NEUR, north Europe; PUR, Puerto Ricans from Puerto Rico; S, south; SE, south-
east; SEUR, south Europe; TSI, Toscani in Italia; YRI, Yoruba in Ibadan, Nigeira;
WAFR, west Africa.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1504447112 Kehdy et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1504447112/-/DCSupplemental/pnas.1504447112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1504447112


restricted to the Iberian Peninsula). However, neither this massive
immigration nor the internal migration of black Brazilians have
concealed two components of their African ancestry from the
genetic structure of Brazilians: one associated with the Yoruba/
Mandenka non-Bantu populations, which is more evident in the
Northeast (Salvador), and one associated with central east African/
Bantu populations, which is more present in the Southeast/South.
This result broadens our understanding of the genetic structure of
the African diaspora. Furthermore, we showed that positive assor-
tative mating by ancestry is a social factor that permeates the
demographic history of Brazilians and also, shapes their genetic
structure, with implications for the design of genetic association
studies in admixed populations. For instance, because mating by
ancestry produces Hardy–Weinberg disequilibrium, filtering SNPs
for genome-wide association studies based on the Hardy–Weinberg
equilibrium conceals real aspects of the genetic structure of these
populations. Finally, in Latin-American populations, the history of
continental admixture rather than local demographic history is the
main determinant of the burden of deleterious variants, although in
a more complex fashion than previously thought. We speculate that
future studies on populations fromNorthern Brazil (including large
cities, such as Manaus, next to the Amazon forest) or the Central-
West may reveal larger and different dynamics of Amerindian
ancestry. Also, fine-scale studies on large urban centers from the
Southeast and South of Brazil, such as Rio de Janeiro or Sao
Paulo, that have been the destination of migrants from all over the
country during the last decades, may show an even more diversified
origin of Brazilians, including Japanese ancestry components, for
instance, that we did not identify in our study. The EPIGEN Brazil
initiative is currently conducting studies to clarify how the genetic
variation and admixture interact with environmental and social
factors to shape the susceptibility to complex phenotypes and dis-
eases in the Brazilian populations.

Methods
Genotyping and Data Curation. Genotyping was performed by the Illumina
facility using the HumanOmni2.5–8v1 array for 6,504 individuals and the
HumanOmni5-4v1 array for 270 individuals (90 randomly selected from each

cohort). After that, we performed quality control analysis of the data using
Genome Studio (Illumina), PLINK (34), GLU (code.google.com/p/glu-genetics/),
Eigenstrat (35), and in-house scripts. This study was approved by the Brazilian
National Research Ethics Committee (CONEP, resolution 15895).

Whole-Genome Sequencing and Functional Annotation. We randomly selected
10 individuals from each of the three EPIGEN populations. The Illumina facility
performed whole-genome sequencing of these individuals from paired-end
libraries using the Hiseq 2000 Illumina platform. CASAVA v.1.9 modules were
used to align reads and call SNPs and small INDELs (insertion or deletion of
bases). Each genome was sequenced, on average, 42 times, with the following
quality control parameters: 128 Gb (Gigabase) of passing filter aligned to
the reference genome (HumanNCBI37_UCSC), 82% of bases with data quality
(QScore) ≥30, 96% of non-N reference bases with a coverage ≥10×, a
HumanOmni5 array agreement of 99.53%, and a HumanOmni2.5 array
agreement of 99.27%. Functional annotation was performed with ANNOVAR
(August 2013 release) with the refGene v.hg19_20131113 reference database in
April of 2014. The nonsynonymous variants were predicted to be deleterious
using CONDEL v2.0 (cutoff = 0.522) (28), which calculates a consensus score based
on MutationAssessor (36) and FatHMM (37). These results were corrected for the
bias reported in the work by Simons et al. (30), which evidenced that, when the
human reference allele is the derived one, methods that infer deleterious vari-
ants tend to underestimate its deleterious effect (SI Appendix, section 8).

Relatedness and Inbreeding Analysis. We estimated the kinship coefficients for
each possible pair of individuals from each of the EPIGEN populations using the
method implemented in the Relatedness Estimation in Admixed Populations
(REAP) software (13). It estimates kinship coefficients solely based on genetic
data, taking into account the individual ancestry proportion from K parental
populations and the K parental populations allele frequencies per each SNP. For
these analyses, we calculated individual ancestry proportion and K parental
populations allele frequencies per each SNP using the ADMIXTURE software (7)
in unsupervised mode assuming three parental populations (K = 3). Inbreeding
coefficients were also estimated for each individual using REAP. We repre-
sented families by networks, which were defined as groups of individuals
(vertices) linked by kinship coefficient higher than 0.1 (edges).

F Statistics. The FIS statistic for each population is estimated as the average of the
REAP inbreeding coefficients across individuals. For each SNP i and each pop-
ulation, we estimated the departure from Hardy–Weinberg equilibrium as FIT(i) =
(Hei − Hoi)/Hei, where Hoi and Hei are the observed and the expected hetero-
zygosities under Hardy–Weinberg equilibrium for the SNP i, respectively. We
estimated the population FIT by averaging FIT(i) across SNPs. We estimated the FST
for each SNP between the YRI and CEU populations using the R package hierfstat
(38). The correlation between YRI vs. CEU FST and FIT values for each SNP was
calculated by the Spearman’s rank correlation-ρ using the R cor.test function.

Population Structure Analyses. To study population structure, we applied (i) the
ADMIXTURE method (7), increasing the number of ancestral clusters (K) that
explains the observed genetic structure from K = 3, and (ii) PCA (35) (Figs. 1C
and 3 and SI Appendix, section 6 and Figs. S4–S6). To study biogeographic
ancestry, we have to exclude sets of relatives that could affect our inferences at
within-continental level (24). We conceived and applied a method based on
complex networks to reduce the relatedness of the analyzed individuals by
minimizing the number of excluded individuals (SI Appendix, section 6.1). Ap-
plying this method, we created Dataset U, with 5,825 Brazilians, 1,780
worldwide individuals, and no pairs of individuals closer than second-degree
relatives (REAP kinship coefficient >0.10) (SI Appendix, Table S13). We per-
formed ADMIXTURE analyses with both the Original Dataset and Dataset U (SI
Appendix, section 6 and Figs. S4 and S5).

PCA and ADMIXTURE analyses were performed with integrated datasets
comprising the three cohort-specific EPIGEN working datasets and the public
datasets populations described in SI Appendix, section 5. For the PCA and
ADMIXTURE analyses, we used the SNPs shared by all of these populations,
comprising a total of 8,267 samples and 331,790 autosomal SNPs (called the
Original Dataset).

Analyses with X-chromosome data used only female samples from the
Original Dataset. To perform such analyses, we integrated genotype data of
shared SNPs from the X chromosome of EPIGEN female samples (from all
three cohorts) and the X chromosome of female samples from the public
datasets populations described in SI Appendix, section 5. This data in-
tegration yielded genotyping data with 5,792 SNPs for 4,192 females.

Local Ancestry Analyses. We inferred chromosome local ancestry using the
PCAdmix software (19) and ∼2 million SNPs shared by EPIGEN (Original

A C

B D

Fig. 4. Individual numbers of genotypes with nonsynonymous deleterious
variants in homozygosis and heterozygosis vs. European ancestry based on
the whole-genome sequence (42×) of 30 individuals (10 from each pop-
ulation): Salvador (Northeast; brown), Bambuí (Southeast; cyan), and Pelotas
(South; gray). Deleterious variants were identified using CONDEL (28) and
corrected for the bias reported by Simons et al. (30). Spearman correlation
between European ancestry and the number of all deleterious variants in
homozygosis for Bambuí and Pelotas individuals was 0.57 (P = 0.009). The
numbers of genotypes considering all deleterious variants in homozygosis or
heterozygosis are in A and B, respectively, and considering only rare dele-
terious variants are in C (in homozygosis) and D (in heterozygosis). SNVs,
single nucleotide variants.
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Dataset) and the 1000 Genomes Project (SI Appendix, section 5.2). Consid-
ering our SNPs density, we defined a window length of 100 SNPs following
the work by Moreno-Estrada et al. (27). PCAdmix infers the ancestry of each
window. Local ancestry inferences were performed after linked markers (r2 >
0.99) were pruned to avoid ancestry misestimating caused by overfitting (4). We
considered only the windows in which ancestry was inferred by the forward–
backward algorithm with a posterior probability >0.90.

After local ancestry inferences, we calculated the lengths of the chromosomal
segments of CSSA for each haplotype from each chromosome from each in-
dividual. The distribution of CSSA lengthwasorganized in 50 equally spaced bins
defined in centimorgans and plotted for each population (Fig. 2A).

For the local ancestry analyses, we used phased data from the 1000 Genomes
Project populations YRI and LWK (Africans) as well as CEU, FIN, GBR, TSI, and IBS
(Europeans), Native-American populations Ashaninka and Shimaa [from the
Tarazona–Santos group LDGH (Laboratory of Human Genetic Diversity) dataset],
and the three EPIGEN populations (Original Dataset). The SHAPEIT software (39)
was used to generate phased datasets.

We estimated admixture dynamics parameters using ABC. We used the
model by Liang and Nielsen (20) to simulate CSSA distributions generated
by a demographic history of three pulses of trihybrid admixture occurring
18–16, 12–10, and 6–4 recent generations ago conditioned on the observed
admixture proportions of the EPIGEN populations. We inferred the posterior
distributions of nine parameters mn,P (SI Appendix, section 6.8).

Lineage Markers Haplogroups Inferences. We performed mtDNA haplogroup
assignments using HaploGrep (40), a web tool based on Phylotree (build 16)
for mtDNAhaplogroup assignment. For Y-chromosome data, we infer-
red haplogroups using an automated approach called AMY tree (41). For
Y-chromosome haplogroups, we considered the Karafet tree (42) and
more recent studies to describe additional subhaplogroups. By these
means, an updated tree was considered based on the information given by
The International Society of Genetic Genealogy (ISOGG version 9.43; www.
isogg.org).
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